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AbItnct-This paper is concerned with the numerical solution of systems of equations of discrete
variables. which represent the nonlinear behaviour of elastic systems under conservative loading con­
ditions. In particular, an incremental approach to the solution of buckling and snapping problems is
explored.

The topics that are covered can be summarized as foUows:-The computation of nonlinear equilibrium
paths with continuation through limit points and bifurcation points.-The determination of critical equili­
brium states.

Characteristic to the procedures employed is the use of the length of the equilibrium path as control
parameter. This feature, together with the second order iteration method of Newton. offers a reliable basis
for the procedures described. Actual computations, carried out on a finite element model of a shallow
circular arch, illustrate the effectiveness of the methods proposed.

I. INTRODUCTION

The elastic stability analysis of plate and shell structures by means of the finite element method
or finite difference method inevitably involves the solution of large systems of nonlinear
equations. In principle, two broad classes of solution methods are available today. One consists
of computer adaptations of a perturbation method developed as far back as 1945, by
Koiter[l, 2]. Examples of this approach in terms of suggested, or actual programme im­
plementations are given by [5-9], in particular[7] and [8]. The other approach, in existence since
the evolution of the present day computer, covers methods which try to solve the equations
step by step, i.e. in a pointwise fashion. Examples of this mode of attack can be found
in [10-22]. The present paper is exclusively devoted to this second type of approach.

It is a consequence of any discrete formulation (e.g. the finite element method) that
the deformation of a given structure is described by a set of (N) deformation parameters, also
called generalized coordinates. In this context the load-deformation history of a structure
presents itself as a curve in a (N + 1) dimensional space spanned by the deformation
parameters and the magnitude of the applied loads. Such a curve is usually referred to as
equilibrium path or deformation path. The problem of elastic stability is intimately connected
with singularities that occur somewhere along the path under consideration (usually the path
which is connected with the undeformed state of the structure, the so-called primary path).
These singular points are better known as critical points. Well known is their classification into
limit points and bifurcation points, geometrical concepts that are connected with the physical
concepts of snapping and buckling respectively [3]. In principle, the stability analysis of a
structure or structural system consists of a computation and evaluation of the critical point of
the path that is considered to be relevant to the problem at hand. To be able to carry out such
analysis, a computational procedure should have the capability: (1) to compute the critical
points, i.e. limit or bifurcation points, (2) to trace parts of the path or path's (branches)
connected with these pointst.

The numerical strategies set forward in this paper are designed to meet these requirements.
They are based on an incremental method proposed earlier in[l4, 15] which features Newton's
method and a special parameter controlling the progress of the computations along the
equilibrium path(s). In the geometrical terms the control parameter selected corresponds, in
good approximation to the "arc length" of the equilibrium path to be computed. It is introduced
by means of an auxiliary equation which is added to the set of equations governing the

tPaper presented at the 14th Int. Congo 7'Moretical and Applied Mechanics, Delft, The Netherlands, 30 August'"
September 1976.

trhis is another way of sayina that the method should have the capability to compute post-eritical equilibrium states.
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(2.1)

equilibrium of the structure at hand. An important advantage of this particular choice is that the
modified set of equations become singular only at a bifurcation point. This means that the
domain of application of the method is increased considerably in comparison with that of more
conventional methods.

The present paper is a shortened version of[l6]t where the application of this method to the
problems of the type (I) +(2) was studied in detail. Just as in [16], the emphasis win here be put
on an exposition of possible strategies and an evaluation of their feasibility.

The reliability of Newton's method in procedures of the type considered presently is well
known[23], and it is this property which prompted its choice. A serious drawback is however.
that it requires a large volume of operations when the dimension of the system of equations is
large. This detracts, at first sight, much from the practical significance of this method in
connection with the solution of large scale problems. Nevertheless, the use of Newton's method
makes it possible to deal with the question of effectiveness first which is the main objective of
this paper. It should be realised however, that improvements in the economy are possible by
measures which do not impair the intrinsic advantages of the methods presently proposed.
Some of these modifications are mentioned, but a directed discussion of possible ways to
improve the computational efficiency will be deferred to a future paper.

The references[l~13, 17-22] constitute a sample of contributions to the present subject,
which were readily available at the time[l6] was completed. The principal difference between
the present paper and the references mentioned is the difference iii choice of the control
parameter in the computations. In [10, 11] a family of control parameters is considered, which
are suitable for the continuation of the computations through limit points. However, the
selection of the one to be applied is left to depend on the particular problem at hand. In the
examples presented, the parameter chosen is called for only in a close neighbourhood of the
limit point. In the other references, the difficulties connected with limit points are either
circumvented by a "jump" technique [22], or solved by replacing the load by one of the
displacement variables as control parameter[l2, 13, 21, 22]. Predictor-eorrector schemes are
applied with either Newton's method as corrector[I~13, 17, 18] or a modification of this
method: the so-called direct substitution method or modified Newton-Raphson method[I9-22,
29]. The question of continuation onto the branch of a bifurcation point is discussed in[l3, 22].

The subject of the present paper win be preceded with a summary of some elementary
concepts of elastic stability theory for as far as this appears to be necessary for the
developments that follow.

BASIC CONCEPTS

2.1 Equilibrium equations
The class of problems considered here concerns purely elastic structures under conservative

loading conditions. It is weD known that for these structures a potential energy function can be
defined from which all pertinent information as regards their behaviour can be derived. It is
assumed here that the kinematical configurations of a structure are described by a finite set of
generalized coordinates:

which are also referred to as displacement variables or deformation parameters. As is
customary in the theory of elastic stability, the loading of the structure is supposed to be
dependent on a single intensity parameter, here denoted by p.

Let the potential energy be given by the function

p = p(i;p). (2.2)

The equilibrium of the structure is then determined by a stationary value of this function.
Stationary values of the energy P are governed by the set of equations

'(t-. ) = ap(i; p)
II , P all 0, i = 1, 2, ... N.

-
tThis report wu distributed only on a limited scale.

(2.3)
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In general, these equations are nonlinear in i and p, and this is always assumed to be the case in
the sequel. The co-ordinates ti are supposed to be defined in such a way that the undeformed
state is the reference state

p =0: i =0. (2.4)

The configuration [p: i] of the structure can be visualized as a point in a (N +1) dimensional
Euclidean Space RN +I, with an orthonormal basis

(2.5)

This point is then given by

(2.6)

Here and in the following repeated indices imply the well known summation convention.
In general, more than one solution i exists at a given value of the load p. The solutions vary

when the load p is varied and describe curves in RN +1J the equilibrium paths of the structure.
They can be described in parametric form by

(2.7)

where", is a suitably chosen path parameter. In the physical model of the structures considered,
the load is prescribed, which implies that p takes the role of path parameter

p = p;i= i(p). (2.8)

For the mathematical model the choice (2.8) is not always appropriate. Here, it will prove to be
more useful to choose '" to satisfy

(2.9)

This defines '" as the arc length of the curve (2.7) and it will be denoted by "s" in the sequel.

2.2 Critical points
According to the theory of stability of conservative systems, the stability of the equilibrium

configurations (2.8) is ensured if the quadratic form

(2.10)

is positive definite. They are unstable if p-z(M) is indefinite, while the transition between a
stable and unstable point of a path is marked by a positive semi-definite p-z(M). This point of
the path is called critical state and it will usually be denoted by an asterisk.

(2.11)

The coefficient matrix of the quadratic form p-z(l1i) is symmetric. Using the notation for
partial differentiation introduced in (2.10), this important property is expressed by

flJ = fJ,I. (2.12)

The precise definition of a critical equilibrium state is given by means of the generalized
eigenvalue problem

(2.13)
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Here, a(k) denote the characteristic vectors and (J)(k) the characteristic values of [j/J] at a given
configuration [p,i] with respect to [T~J]: a positive definite, but otherwise arbitrary matrixt.
This freedom in the choice of [T/J) is only of ·minor importance in the present paper. With the
exception of Section 5.1 eqns (5.2), [T;j] will here always be equated to the identity matrix, thus

Ti•J = ~iJ( = the Kronecker delta).

The characteristic values (J)(k) are supposed to be arranged according to the sequence

(J)(I) ~ (J)(2) ~ (J)(3) ~ .... ~ (J)(N).

(2.14)

(2.15)

The quadratic form pi,b.i) is positive definite, and therefore the equilibrium configuration
[p(s); i(s)] is stable as long as the characteristic values (J)(k) satisfy

0< (J)(I) ~ (J)(2) ~ ..... ~ (J)(N).

The stability limit is reached when

0= (J)(I) = (J)(2) = ... = (J)(K) < (J)(K + 1) ~ ... ~ (J)(N)

(2.16)

(2.17)

thus when one or more eigenvalues (J)(k) in the sequence (2.15) are zero. In this paper the
restriction will be made to discrete critical points only, i.e. to points defined by

0= (J)(I) < (J)(2) ~ (J)(3) ~ .... ~ (J)(N). (2.18)

In the context of the theory of elastic stability of conservative systems, (2.17) and (2.18) are
unambigous definitions of a critical state. There is another criterion which is useful in
applications but which can only be appreciated as a necessary condition. The determinant

D = det{f/J(i; p)}

as is wellknown, can be computed from

D = {n (J)(k)} det{T~J}'

It follows that at a critical state

D = D(i*; p*) = O.

(2.19)

(2.20)

(2.21)

The criteria (2.18) and (2.21) will prove useful instruments for the determination of critical
points.

2.3 Limit point and bifurcation point
It is well known that in general, equilibrium becomes critical in either a limit point or

bifurcation point (FIg. 1). These geometrical concepts follow from the analysis of the behaviour
of the solutions (2.8) in the neighbourhood of the critical points (see, e.g. [3, 4]). A
complete analysis of this nature is extensive and falls outSide the scope of this paper. In what
follows it is only necessary to know the criteria which characterize the di1ference and to have at
the disposal a means to compute the direction vector of the branch of a bifurcation point,
whenever such point is encountered. The present and the following section will deal with these
questions.

tIt is convenient to consider the vectors tiCk) normalised accordina to 14(k)1 = I, wherell denotes the
Euclidean norm: 141 =(ci4)ln =(DA)ln. Note that the inner product will be denoted by either (46) or (tJjb,).
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The properties of the path are described by the path derivatives
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. .:. _[~ di]
[p, t] - ds'ds

.. .:. [d2 d2i]
[p, t] = a?' S? ' etc.

(2.22)

These vector quantities are determined by the following equations

Equations (2.23) are not complete without

pjJ+ ihih= 1,

W+ iih = 0, etc.

(2.23a)

(2.23b)

(2.24a)

(2.24b)

which side conditions follow from the definition of the path parameter s, see eqn (2.9). It is
noted that in (2.23) the convention AD = a/Jap is introduced. Equations (2.23), in conjunction
with (2.24) should hold everywhere along the path [pes), i(s)]. However, at the critical point,
[j/J] is singular in accordance to definition (2.21). This means that the non-homogeneous parts of
eqns (2.23) should satisfy the orthogonality conditions

[aj(l)f~oP]•••• = 0

[aj(l){f~op +ijj +i~oPH••,. = 0

(2.25a)

(2.25b)

where the asterisk indicates that the evaluation is made at a critical statet.
It follows from the first requirement (2.25a), that two cases should be considered seperately

p(s*) = 0

f~oCs*)aj(l) = O.

(2.200)

(2.26b)

In the general theory, these conditions are known as the condition for a limit point and
bifurcation point respectively. Of course, they should be read in conjunction with (2.18) or
(2.21).

An equivalent formulation of (2.26) can be presented which does not contain the eigenvector
ti(l). It is first noted that eqns (2.23a) can be rewritten in the form

where the components dj of the vector d are defined by

(2.27)

[14-16]. (2.28)

The transformation of (2.23aH2.27) is accomplished by means of the matrix

tEquations (2.25) are sometimes referred to as consistency relations.

(2.29)



534 E. RIKS

I ISNAPPING I

-' I. L1MT POINTj

~L"\ _
DISPLACEMENT

I IBXKLlNG I
I

ir>~~'%'"
~------- -

DISPLACEMENT

Fig. I. Problem types.

which is the matrix of cofactors of D. Note the relationship

aD
iJt. _. li.k = ~Ik'

J},I

(2.30)

As before, examination of the transformed eqns (2.27) subject to (2.18), leads to the conclusion
that two different situations should be considered.

p(s*) = 0

aD
dl(s*) = --/u= o.

a/~.1

(2.3Ia)

(2.3tb)

In the form (2.3tb) the bifurcation condition is less known than (2.26b). However, it will
prove to be a useful relation in what follows. A proof of the equivalence of (2.3tH2.26) is given in
the Appendix.

2.4 The tangent to the branch
As was mentioned earlier, the character of a critical point can be exposed by studying the

solutions of (2.23) at such a poiqt. At present it will suffice to restrict the considerations to the
solution for the tangent [p(s*), i(s*)]. Only a sketch of the derivations will be given.

The computation of the. tangent at the critical point is carried out on the basis of the
observation that a solution i of (2.23a) can be written as the sum of the particular solution py
and an arbitrary multiple of the eigenvector d(l) associated with the critical state, thus

i = py +#Ld(l).

It is noted in passing, that according to this proposition

When expression (2.32) is subjected to conditions (2.200) and (2.24a), it follows that

[p(s*), I(s·)] = [0, dO)].

(2.32)

(2.33)

(2.34)

Consequently, at the critical point defined by p(s·) = Q, the tangent vector corresponds to the
eigenvector d(l).

In the second case (2.26b), the situation is more complex. The general solution (2.32) is now
not determined by (2.25a) alone, but also needs the side condition (2.25b) for its completion.
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The result is that two solutions emerge

[p(s*), i(s*h1= [PI, p,y + #LItil

[p(s*), i(s*)I11= [PII, PI,y + #Lndlt

m

(2.35)

where, for convenience a is written for a (1). The specification of Pit PII, #L1, #LII, j will nQt be
given because the explicit form of the solution (2.35) is not of interest here. This follows
because once the bifurcation point is computed, one of the solutions (2.35) will automatically be
provided by the methods to be discussed in this paper. It is advantageous therefore. to use this
tangent vector in the construction of the other. Note, that it is possible to express one of the
two solutions (2.35) as a linear combination of the other and the eigenmode a. A convenient
choice of such construction is

(2.36)

If [PI. i] is known explicitly together with the eigenmode d. a and #L can be computed from the
requirement (2.25b) and the normalizing condition (2.24a). The result is

#L = (a~l.!¥k)
2(aJI.jkajtllc + aJlJOapI)

a = Il#LPI. #Lt + aWI = {#L 2 + 2#Lat + If1/2.

(2.37)

It is finally noted. that a detailed derivation of the results shown in this section can be found in
the appendix of[l6l. Only the presentation of the result (2.36) is modified with respect to the
one shown in[l6l. This is done here to allow for the inclusion of the special case: aJI,jkajak = o.

3. THE INCREMENTAL SOLUTION OF EQUILIBRIUM PATHS

3.1 General strategy
In general. eqns (2.3) admit a number of solutions i for a given value of the load p but

usually only a few of these solutions are important to the stability anilIysis. For the time being.
attention will be focused to solutions i which correspond to a continuous deformation of the
structure from the undeformed state. Equilibrium states thus obtained belong to the so-called
basic or fundamental equilibrium path of the structure under consideration.

Iteration methods for the solution of nonlinear equations like (2.3) require. as is well known.
a starting configuration (or initial iterate) which is "close" to the solution to be determined. This
requirement fits well into the scenario of an incremental procedure which is designed to solve
an equilibrium path in terms of a sequence of successive. but distinct points. Each point
obtained offers a means to construct the starting configuration for the next to be computed. The
accuracy of the "initial" iterate can be controlled by keeping the distance between the known
and the still unknown point within certain bounds.

Two well known strategies are depicted in Figs. 2(a) and 2(b). In the first case. the load
parameter p is used as the prescribed variable (denoted by 11). In the second case, one of the
deformation parameters tK is taken to fulfill this role. Each point computed by the first method,
is determined by the intersection of a surface p = constant (= 11) and the equilibrium path'
governed by eqns (2.3). A point computed by the second method, is determined by the
intersection of a surface tK = constant (= 11) with the same solution curve. This explains why
both methods (a) and (b) break down in the neighbourhood of the turning points in Figs. 2(c)
and 2(d) respectively.

The points in question are characterised by

P= dp = 0 for p = 11.
ds

tTbere are more solutions when the bifurcation point is no 10llier distinct.
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Fig. 2. Examples incremental solution methods.

. dtK
tK =- =0 for tK =.,,**

ds
(3.1)

where it is noted, that the first definition given corresponds to the condition for a limit point. In
either case, incrementing the value of ." beyond the limiting values (3. I) leads to specifications
of the surfaces

fo =p -." =0

/0 = tK - TJ =0

which do not define intersections with the equilibrium path, at least not in the neighbourhood of
the points defined by (3.1). The breakdown of the procedures described does usually not occur
suddenly, but is announced some time in advance by a marked increase in number of iterations
necessary to obtain converged solutions. There is some evidence [14, 15], that this phenomena is
coupled to the decrease in quality of the intersection of the surfaces (3.2) with the equilibrium
patht when the critical points (3.1) are approached.

A measure of the quality of intersection is given by 6, the angle between the tangent of the
equilibrium curve and the normal to the intersecting surface at the point of intersection. The
intersection is considered good if 6 is close or equal to zero and bad if it is close or equal to
7T/2. In this sense, ideal would be a family of surfaces (defined for a range of parameter values .,,)

(3.3)

which intersects the equilibrium curve everywhere according to the condition 8 =0 (Fig. 3). Of

Fig. 3. Ideal procedure.

tln[14.15J, this connection is not properly formulated. However, it does not invalidate the finding.
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course, it is not possible to construct such a set of "ideal" surfaces, because this would require
the advance knowledge of the solution curve defined by (2.3). However, it is not necessary to
insist on 8 = 0 at the points to be computed. Also a small value (8 < 11'/2) would be sufficient to
protect the procedure against failures of the type described. The relaxation of the condition
8 = 0 to 8 < 11'/2 opens a whole world of possible formulations of eqns (3.3). The particular
choice made in this pap'cr will be introduced now.

Let [Ph il ] and [Ph id denote a point of the path and its corresponding tangent respectively,
and let 111 denote the value of the path or control parameter 1'/ at this point. Suppose that these
vectors have been computed at some stage of the computational process and that the next point
is about to follow. The equation

(3.4)

defines a surface, Le. a plane, with [P, i) denQting the corrdinates of an arbitrary point of the
plane. This plane is normal to the tangent [Ph itl and its distance to [Ph itl is (1'/ -71.). It will be
intersected by the equilibrium curve with a small angle 8 if the distance (1'/ - 1'/1) is kept small. As
soon as the point of intersec~ion is computed for some value of 1'/, eqn (3.4) can be redefined,
which means that [Ph id, [Ph itl in (3.4) are replaced by the values that correspond to the new point
obtained. It becomes clear, that in this way control surfaces are created, which comply very well
with the requirement of a small 8 along the path.

The control parameter 1'/ as defined by (3.4) and the computational procedure based on this
choice, were first introduced in [14]. It is noted that differentiation of (3.4) leads to

(3.5)

where, as before, the dot is used to indicate differentiation with respect to s, the arc length of
the solution curve. It can be deduced from this expression (see also 2.24), that for 1'/1~ 1'/ the
ratio (ds/d1'/) approaches unity. This means that 71 introduced by (3.4) serves as an ap­
proximation of s for small values of (1'/ -1'/1). Therefore, in the following the symbol 1'/ wiJI be
replaced by s to indicate the geometrical significance of the present choice of the control
parameter. The context in which s appears wiJI usually be sufficient to explain whether this
parameter is used in the exact or in the approximate sense.

3.2 Newton's method

For what follows it is convenient to introduce a more compact notation. Since the load
parameter P and the deformation parameters tIt wiJI be treated as unknowns on an equal basis, a
configuration [p, i) can better be written as

Xo =P; x" = tlt(h = 1,2,3, .... N).
(3.6)

The control parameter s is introduced by adding the equation 10 = 0 as a constraint condition to
equation II = O. Consequently, one can write

fa(i; s) = 0 (a =0, 1,2, .... N). (3.7)

With this, the convention is introduced that Greek indices cover the range (O,I, .... ,N),
while Latin indices remain reserved to cover the range (1,2, ... , N). It is noted that in
agreement with the foregoing, partial differentiation with respect to Xa is denoted by

a a a a a
axo = ap = ( ).0; ax; = at; =( ),;~ aXa =( ).a

(3.8)
(a=0,1,2, ... N).
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or
Xo(SI){xo(S) - Xo(SI)} - (s - SI) = 0

.f(sl){i(s) - i(sl)} - (s - s,) = O.
(3.9)

It is expedient to make a distinction between exact or converged solutions of eqns (3.1) and
approximate solutions or iterates. This will be done by the fOUowing convention

(exact)

if = (UI), Ul, U2, •••• UN) (approximate solution or iterate) (3.10)

f = (TO, T" T2, •• •· TN) (improved approximation or higher order iterate).

Applied to eqns (3.1), the method of Newton [25] is defined by the system of equations

(3.11)
with

(3.12)

It can be defined in inverse form

(3.13)

where Fo./J correspond to the definition

(3.14)

A configuration i(s) defined by eqns (3.7) is computed as follows. An approximation if is
entered into (3.11), the system is solved for 4if and an improved solution f results, (3.12). The
process is repeated and convergence is obtained if if approaches i sufficiently close. The
literature about the method is extensive so that a detailed description can be omitted (for
instanec[25-27]). Three global points should be mentioned however: (a) The method makes use
of the inverse of [fo./J] which means that the Jacobian must satisfy

J = det{fo./J} # O.

(b) If J # 0, a finite domain lif - il2 =82(f) around the point f can be defined so that any initial
iterate if = if(l) which satisfies lif - il2 < 82(f) leads to a convergent process. (c) The rate of
convergence is quadratic, i.e.

If - xl = Llif - il2

where L is some positive number which depends on the configuration i(s).
The electiveness of the procedure to be discussed now is for a great deal based on these

properties.

3.3 Basic procedure
Suppose that of the equilibrium path to be computed, one point is known in advance together

with its path derivative, and denote these vectors by

i l = X(SI)

£1 = .f(SI).

An estimate of a next point of the path is then readily given by

(3.15)

(3.16)
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This approximate solution 0-(1) can be improved by the successive solution of

i = 1,2,3, ... M

539

(3.17)

until for i = M, a sufficiently accurate solution is obtained. (The question how this accuracy can
be controlled effectively is not a part of the discussion at the present time. The way it is usually
done is mentioned in Section 5.1.) A picture of the procedure defined by (3.16) and (3.17) is
given in Fig. 4.

i
a.,

0;
x,

I

Fig. 4. Basic procedure.

For the computation of the next point of the path (s +as) it is necessary to compute the
tangent i(s). It can be done by means of the set of equations

1".fJ(i = o-(M~bfJ - l)"o =0

; b
x(s) = 16'1'

(3.18a)

(3.18b)

Equation (3.18a) follow from eqns (3.7) when the latter are differentiated with respect to
s(b" = dx"/ds). The normalizing condition (3.l8b) is a consequence of the circumstance that the
parameter sin (3.7) can only be appreciated as an approximation to the arc length of the path. It
goes without saying that one can quite well do away with the "exact" value of the tangent
vector i as determined by (3.18) and use an approximation instead. A simple example of such
alternative is

; i-ilx(s) a; -.--..

Ii-it!
(3.19)

The choice depends somewhat on the way the complete procedure is implemented. However,
the first possibility should always be preferred in cases where the extra volume of operations
connected with (3.18) can be accepted.

3.4 Justification 01 the method
The effectiveness of Newton's method as it was formulated in Section 3.2 depends in the

first place on the existence of a non-singular Jacobian [f"JI]. In the second place, successful
application of the method depends on the "closeness" of the initial iterate 0-(1) to the true
solution i.

The first requirement concerns

J = det [f".fJ]'

Expansion of this determinant with respect of the first row gives

(3.20)

where AI are the co-factors of 10.1 in J. It can easily be verified that the co-factors Ai must be
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identical to the vector components di introduced in Section 2. Thus,

[14,15]. (3.21)

With the present choice of fo, eqn (3.4), this expression can be written in the form

(3.22)

where dO<s) is used to denote the determinant D(s) for convenience. The parameter value s
corresponds to the intersection of fo =0 and fi =0, while s. corresponds to a previous point of
the solution curve in agreement with the foregoing notation. Although evaluated at the point
i(s), J(s) = det{fa.tl(i)} is also dependent on the point i(s.) through the derivative f(s.).

In the compact notation introduced earlier, eqns (2.27) read

(3.23)

The square of the "length" of both sides leads to the equality

The scalar product of both sides of (3.23) with ia(s.) and use of (3.21) results in

dO<s){ia(Sl)ia(s)} = iO<s)J(s).

Equations (3.24) and (3.25) can be combined to give

0.24)

0.25)

(3.26)

It is noted that there are two possibilities for J(s) to become zero. The first occurs if the
angle (J between f(s) and f(sl) is equal to 1T/2, because then

cos (J = f(s.)1(s) =o.

It is clear that this situation can easily be avoided by taking the stepsize (s - Sl) small.
The second possibility occurs when

J = () or D = 0: di = 0

(3.27)

(3.28)

which is the condition that is satisfied at a bifurcation point. Consequently, [fa./l] will be non­
singular along the path if bifurcation points are excluded and if the steps J1s = s - s. are taken
small enough.

The second requirement for convergence of Newton's method concerns the distance of the
initial iterate u(ll to the exact solution i(s). It must be clear that this distance can be made as
small as one wishes because the use of the predictor (3.16) implies

0.29)

Therefore, the procedure described in the previous section should be effective along any
smooth equilibrium path governed by eqns (2.3), as long as the stepsize tu is kept small enough
and as long as no attempt is made to compute a bifurcation point or a point in a close
neighbourhood thereof. A rigorous account of this method has recently been given in[32]: see
also Section 5.4. It is finally noted, that eqn (3.25) can written as

(3.30)
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which illustrates with more clarity the connection between the stability determinant D and the
determinant J of the extended system of equations. Relation (3.30) is useful for the detection of
critical points as will be seen later.

4. APPLICATIONS

4.1 Detennination of a critical state
An important part of the stability analysis is the determination of the critical state. In the

case of a snapping problem, the computation of the critical state (the limit point) is usually the
final goal of the analysis. In the case of a buckling problem the determination of the bifurcation
state is the point of departure for an evaluation of the specific properties of this state.

Conditions for the occurrence of critical points were stated in Section 2. The lowest
eigenvalue of [f~jJ should satisfy

wl{(i(s)} = o.

It is also possible however to detect a critical point by the vanishing of the determinant
D{i(s)}, thus

D{i(s)} = o.

It is feasible to determine the critical state of the basic path using a strategy which can be
described as follows. Compute points along the path i(sJ together with the values w(Sj) or
D(Sj) until the quantities last mentioned undergo a change of signt. Construct polynomials
through i(sl) and w.(s/) or D(sj) and construct with use of these polynomials the approximation
of i(s*) for which the zero of WI or D is attained. It is known that procedures of this nature
have been used successfully [20, 21J. However, an unpleasant aspect of this method is the
uncertainty about the stepsize /1$ to be used. The stepsize tu is determinate for the number of
points computed before a zero of Wh or D will be encountered. Too many points are wasteful
from an economical point of view, too few points will lead to inaccurate results. Therefore. at
present a strategy is adopted which guides the computation in the direction of the critical point.
The aim is to reduce the number of intermediate results (the non-critical points) as much as
possible.

Suppose that a sequence of pre-critical points of the basic path have been computed and
denote these points by

i(s.): i(s~: : i(sj)

0< Sl < S2<······ < Sj.

(4.1)

Suppose further that the stability coefficients, i.e. the eigenvalue w.(s) and the determinant D(s)

can be expanded according to the series

. 1 - 2
D(s) = D(Sj) +D(Sj)(s - sJ +2 D(Sj)(S - SI) +.... (4.2)

where SI corresponds to the last point of the sequence (4.1). Within a certain neighbourhood of
the critical state, the slopes Wt(s), D(s) must be negative*- Suppose now that i(sj) is within this
neighbourhood. It then follows that a first estimate of the critical state i* = i(s*) (relative to
the point i(sj» can be given by

(4.3)

tHole. that at this point the notation lII(k) is changed to lilt.

*Sec also the fint remark of Section 5.3.
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where As is determined by either

or
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As· =(s* - Sf) =- ~::~.

(4.4a)

(4.4b)

Postpone the examination into the possibilities to compute (4.4a) or (4.4b) for the time being
and assume that one of these estimates has been obtained.

If the approximation (4.3) is not satisfactory, a new estimate should be constructed relative
to a point which is nearer to the critical state. Such a point can conveniently be computed with
the basic procedure in which the predictor (3.16) is modified to

o,(i) = i(s;) + 1}As*i(s;). (4.5)

In this expression 1} is some measure to serve as a means to keep the stepsize As = 1}As* within
acceptable bounds. After the new approximation (4.3) has been obtained the process can be
repeated and so on. The complete procedure is convergent if As* approaches zero in the
subsequent steps. Figure 5 shows a picture of such a procedure.

a

9

07 SlCCESIVE ESTMAJES
a" CRITICAL PONT

;«s,> SlCCESIVE fQlNTS a"
THE~TH

DISPlACEMENT Xi

Fig. 5. Computation of critical point.

It does not seem possible to give a recipe for the choice of the factor 1}. If one insists on
approaching the critical state from below, Le. from the stable part of the path (as was tacitly
assumed in the foregoing), it should be given the value 0 < ." ~ 1 in most cases; with ." = 1
probably as one of the best choices. Much depends on the accuracy of the estimate As* and the
error of the first iterate 6(1)(8=i(s/) + ."As*i(s/) - i(s;+I» which should be within a certain
bound as was discussed earlier. (fhe strategy whereby the critical state is reached from below
is a convenient one from a programming point of view but it is by no means necessary. This
particular aspect of the implementation of the procedure will not be discussed in this paper).

The time has come to deal with the question how the estimates (4.4a) and (4.4b) can be
computed.

(a) The estimate (4.4a). The characteristic value (d1(S) of [f/J] is determined by eqns (2.13)

(2.13)

where Til is some suitably chosen, positive definite reference matrix not considered dependent
on s. Note that a is written for a(l).

These equations are valid along the path for any s. Consequently, it is permissible to
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differentiate (2.13) with respect to s, which gives
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(4.6)

By taking the scalar product of awith the expression on the I.h.s. of (2.13) and (4.6) one can
show that

(4.7)

where

(4.8)

Thus (4.4a) can be computed if Cl.Ih a, i and [//J] are known at the point i/. The first eigenvalue
and corresponding vector can be obtained from (2.13) by standard procedures. The slope i(sj)
at the point i(sj) is automatically produced when the procedure of Section 3.3 is used.
However, the computation of [j/J] needs more consideration. The r.h.s. of (4.8) looks straight­
forward but nevertheless necessitates the evaluation of the third order derivatives fl,Jo t which
occupy an array of dimension N 2(N +1). Operation with such a large set of functions is
cumbersome and will soon lead to insurmountable storage problems. Therefore, in this paper
the point of view is taken that the use of derivatives of order three and higher should be
avoided if it is possible to do so. A possible way to circumvent this difficulty is to use an
approximation, e.g.

(4.9)

The disadvantage here is that [f/J(Sj-t)] must be stored and to a lesser extent that at least two
points of the path must be determined before it can be used. Yet another possibility to
approximate cd(s/) is

(4.10)

which is the simplest of all, but which needs two evaluations of Cl.I before it can be applied.
(b) The estimate (4.4b). Application of (4.4a) requires the evaluation of the smallest

eigenvalue of [f/J] (in absolute sense), which adds considerably to the volume of the com­
putations, at least when standard routines are used. It might well be that the second estimate
(4.4b) is a more economical alternative. The evaluation of the derivative D(s) in an exact sense
is impractical for larae systems of equations because it requires too many numerical operations.
Therefore, also in this case, finite difference approximations are a possible way out. The
simplest choice is

(4.11)

Clearly, (4.11) can only be used with advantage if the determinant values D(s/) can be obtained
in a relatively easy way. If the solution of eqns (3.17), a decomposition method is used,
the determinant J = detUaJI} will automatically be provided. In that case the computation of
(4.11) is straightforward because, see eqn (3.30)

(4.12)

tThird order derivatives of the potential eocl'lY P.
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It is noted that eqns (4.12) require three points of the path to be known in advance which
follows from the appearance of the three different tangents in these expressions. If this
property is undesirable, one can drop the terms [ia(Si-2) ia(Si-t)J and [ia(Si-l) ia(Si)]' This
follows be~ause the zero's of D(s) are essentially contained in the zero's of p(s) or J(s)t.

4.2 Continuation beyond the critical points
It is often desirable to extend the computation of the basic equilibrium path beyond the

critical states. It must be clear that this task can be carried out with the procedure discussed in
Section 3. As was shown in Section 3.4, the basic incremental method used here is only
sensitive to a bifurcation point because there the Jacobian matrix (fa.Il] of eqns (3.17) becomes
singular. Passing a limit point or a turning point with respect to any other variable tK does
therefore not pose a problem. Passing a bifurcation point need not be a problem too, as long as
the use of eqns (3.17) close to or at this particular point can be avoided. In fact, when the
stepsize I1s is chosen arbitrarily there is little chance that this will occur. Consequently,
continuation of the computation beyond limit and bifurcation points (Fig. 6), can be carried out
without special or difficult measures in the implementation of the procedure.

EXAMPLE 1

p

._---
t.

Fig. 6. Continuation along basic path.

4.3 Continuation onto a branch
The discussion is slightly more involved in cases where one wishes to compute the branch

of a bifurcation point. It will be assumed here, that the bifurcation point together with its
tangent to the basic path are obtained beforehand, e.g. as a result of the method discussed in
Section 4.1. They will be denoted by .£(s*), i1(s*) respectively.

As should have become clear from the foregoing, continuation along any smooth path is
possible as long as at least one regular point of the path is known in advance. In that case, the
tangent to the path can be obtained from eqn (3.18) and the subsequent operations can be
carried out in a straight-forward manner, i,e. in the way it is described in Section 3.3.
However. of the branch of the basic path, only the configuration .£(s*) is known in advance and
this state corresponds to a singular matrix (feJl]. The tangent to the branch at this point cannot
be computed from (3.18), but follows from eqns (2.37). In the shortened notation they read

(4.13)

tOne should expect loss of w:uracy of (4.11) in that case.
tHOle that it is implied that 11 = (O, a.. a2.· ...• aN)'
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Continuation onto the branch can now be started with the following initial configuration

0'(1) = X(s.) + dsiu(s*).

SotS

(4.14)

Unfortunately the calculation of iu(s*) from expressions (4.13) involves the evaluation of the
derivatives f/Ja which is, as was explained before, not attractive from a practical point of view.
It was shown in [16], that it is possible to compute IL in (4.13) without the use of these functions.
However, it was also demonstrated that another start of the procedure onto the branch can be
made which abandons the direction vector (4.13) altogether.

First it is noted that the tangent i" is not a necessary choice for fo.a in the formulation of
the auxiliary surface /0 = O. The computation of the set of eqns fa = 0, (3.7), can be carried out
with any other normal vector [fO.a] as long as intersection of the plane /0 = 0 with the path
remains reasonably well preserved. With this in mind, an effective choice for the normal [fO.a] is
given by

(4.15a)

where the factor IL I is determined by the product

(4.15b)

It follows by inspection, that the scalar product of il and iu with [fO.a] gives

ila(s*)fo.a = 0

iUa(s*)fo.a~ O.

Thus the surface /0 = 0 defined by the normal (4.15) is parallel to the tangent il(s*). This implies
that in the neighbourhood of the critical state intersections of the basic path with the surface
/0 = 0 cannot occur. In other words, the computational process is prevented to return to the
basic state. The predictor in the first step onto the path is now given by

(4.16)

Once the point corresponding to (4.16) is determined, the tangent to the branch at this point can
be computed with (3.18) or (3.19) and continuation of the procedure can further be carried out
in the manner described before. The advantage of the predictor (4.16) over the one discussed
earlier, (4.14), is the simplicity of its construction. Only the explicit knowledge of a the first
eigenvector of [flj(s*)] is required. Possible failures as a result of the predictor (4.16)
(determined by (4.15» are anticipated when the angle between the basic path and branch is
small at the critical state, thus when

cos 8 = [il(s*) . iu(s*)] - 1.

In that case one is forced to attempt the alternatives mentioned earlier.

S. EXAMPLES AND CONCLUSION

5.1 Shallow circular arch
The stability of a circular arch, uniformly loaded in radial direction, is lost in either a limit

point or a bifurcation point depending on the dimensions of the arch and the boundary
conditions enforced at the ends [27, 28]. This property offers the opportunity to test the
numerical techniques discussed in the foregoing on one and the same model. In[16), a finite
element method was employed for the discretization of the governing equilibrium equations. In
this section, the results of the computations carried out in[l6] will briefly be discussed.

Apart from the boundary conditions, the determining factor in the behaviour of the arch is

SS Val. 15, No.~
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the parameter
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(5.1)

where Rlh = radius to thickness ratio and 2a = arc-length of the arch. In the examples that
follow K was set equal to either K = 4 or K = 10.

The first two examples in Figs. 7 and 8 respectively, represent two different calculations of
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Fig. 7. Example limit point computation (I). Fig. 8. Example limit point computation (II).

the same problem, i.e. the case "clampeHlamped; K = 4; a = 22.5°". Procedure I made use of
the predictions I1s· of the type (4.4a) which was computed from the set of equations

(5.2)

Procedure II was based on the predictor I1s· of the type (4.4b), the approximate value of which
is given by

A • _ D() s/ - s/_)
~s - - S/ D( ) D( ).

S/ - S/_)
(5.3)

(5.4)

The direct way in which I1s· is determined by (5.2) follows from the definition of (4.4a) together
with (4.7) if 1i1 in (2.13) is taken to be

1";1 = - i/J{i(st)}'t-hed.

More details on this particular choice of TIj can be found in[l6].
The iterative improvements of each solution point were terminated after the improvement

110'(1) satisfied
(5.5)

where £1 is some small, preassigned, positive number. The value I1s·(I) corresponded to the first
estimate

(5.6)

The approximation of the critical state

(5.7)

was considered to be adequate if the prediction I1s·(I) in the step (i) satisfied

(5.8)

again with £2 preassigned.

tID this particular case IlII = .1.s-; 61. = 1,(16].
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Table I.

PROCEDURE 1 PROCEDURE n
STEP

ITERATION ITERATIONP Wo 10-' P Wo 10"
COUNT COUNT

, 2.4354 4.6033 2 2.43534 46033 2

2 3.0290 80578 2 2.5540 50246 1

3 3.0753 9.2763 2 2.8529 6.4525 ,
4 3.0777 95919 1 2.9800 74538 1

5 3.0780 9.6413 0 3.0490 8.4085 1- ===0:

6 3.0722 9.0871 1

7 3.0722 9.4694 1

8 3.0777 9.6074 1

9 3.0778 9.6401 0- -
ITERATION COUNT TOTAL 7 ITERATION COUNT

9
TOTAL

The numerical results of the two runs are presented in Table l. Measured in terms of the
total number of iterations carried out with eqn (3.17), Procedure I is the most efficient of the
two examined here.

However, the total computer run time used by a particular method also depends on other
factors such as the time required to compute the estimates (5.2) and (5.3). A discussion about
this important question and others connected with the economy of the methods proposed here
is postponed to the next section.

Further examples of calculations carried out with Procedure I are given by Figs. 9-11. In
none of these cases difficulties were encountered. Iterative improvement of the initial iterate
6.(1) seldom exceeded 2 iterations if the termination condition (5.5) was applied with £) = 0.005.
As expected, the largest number of iterations are needed at points which correspond to the
largest step 1:1$.

An example of numerical continuation through a limit point is given in Fig. 12. An example
of continuation onto a branch is presented in Fig. 13.

All these calculations were carried out on a system of equations of dimension 46, 47 or
50 depending on the boundary conditions used (a 16-element representation).
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Fig. 9. Example computation bifurcation point (I).
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Fig. 10. Example computation bifurcation point (2).
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Fig. II. Example computation limit point.

_l.....-.----.L._....l...-_~_ ----L..----l.._.J......-.-----l

o 02 04 06 08 10 12 14 16
we

K,4
(1·225·
1l,1

p R"h
P't:T

w,~

15,-

!
1Oi-

12

~
K ,4
(l. 22 S·
1l,1

p R'h
P 't: I

W.
w,~

£ ·001

06 oe 1'0
,

1'4
,

12 16
Wo

Fig. 12. Example continuation along basic path. Fig. 13. Example continuation onto branch.

5.2 Questions about efficiency
Applied to the arch problem, the methods discussed in this paper prove to be effective in the

sense that all equilibrium points relevant to the analysis of the arch can be obtained by them.
However, as tools in the framework of a general purpose program for the stability analysis of
structures, one desires next to effectiveness also an acceptable degree of efficiency of the
methods employed.

The method of Newton on which the present procedures are based requires the repeated
solution of the set of equations

fa~(O'(i»~(Tf}i)+ fa (O'(i); s) == 0

O'(i+1) =O'(i) + ~O'(i): i == 1, 2, .... M

(5.9)

in order to obtain one particular solution O'(s). The iteration count (M) varies from point to
point in principle, and is strongly dependent on the accuracy of the predictor 0'(1). The
operations connected with the solution of (5.9) increase cubically with the dimension (N) of the
problem at hand. It is expedient therefore to minimize the number of iterations with (5.9) as
much as possible.

A strongly recommended way to deal with this problem is to improve the predictor (3.16) for
instance by taking into account the curvature /(s) of the path

(5.10)
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(5.11)
M

-() -(I) +~ " -(i)x s = u ~ ~u
.=1

Another improvement can be introduced by a relaxation of the termination condition for the
Newton iteration cycle at points of the path which are not of particular interest (see[16] Section
6).

A different means to reduce the volume of the computations is based on a modification of
Newton's method.

The idea is to reduce the computational effort connected with the factorization of [fa,Jf]t. It
is well known that the iterative process defined by (5.9) will also be effective with a suitable
approximation to the matrix [fa.ll(a)]. For instance, in some neighbourhood of the point
i l = i(SI), [fa.ll(il)] can be used in

[ ...Il(il)4ull(i) +[ .. (a(i); SI +4S) = 0

to compute points i(s) for S= SI +4s.
In this scheme, [f..,Jf(XI)] is factorized once. Each iteration involves only the computation of

[fa] and the construction of the improvement 4a (by back substitution). The effort spent is
considerably less than the effort spent with a true Newton iteration. However, the modification
does not converge quadratically[26] but linearly. Consequently the number of iterations
required is larger than that required by Newton's method. The linear character of the method
implies.

I
-(k) -I L1k)I-lk-l) -,U -x = u -x (5.12)

where the factor L(k) depends on i l and i(s).
It can be shown that the leading term of L{k) is linearly dependent on the distance

li(sj) - i(sl)l- (Sj - SI). For small (Sj - SI), L(k) < 1 and convergence is assured. However, when
(s/- SI) increases, the rate of convergence will decrease until at some distance convergence
breaks down altogether. Consequently, the method requires a redefinition of [fa,Jf] from time to
time but this will be required anyway if one wants to make use of the stability coefficients CUI or
D.

The modification just described is used in the computer code STAGS [29, 30] which is a code
to analyse the nonlinear behaviour of shells and plate structures. The authors report consider­
able improvement of the efficiency with respect to the original procedure based on Newton's
method. In STAGS, the control parameter is either the load factor (P) or a multiplier connected
with prescribed displacements. It will be interesting to see how this modification works when
the length of the path is prescribed, because this choice of the control parameter seems to have
a definite edge over other possible choices.

In the procedures for the computation of critical points the predictors based on (4.4a) or
(4.4b) were introduced in order to reduce the number of intermediate results, that is the
non-critical points i(Si). However. the use of these estimates can only be justified if it does not
add considerably to the volume of the computations. When the solution of the linear system
(5.9) or (5.11) is based on a decomposition method, the value of the determinant 1(0') will be
produced as a consequence of this method'. In that ~ase, D, and therefore the estimate (4.4b),
can easily be computed as is described in Section 4.1.

The situation is less simple for the estimate (4.4a). The calculation of CUI and the corresponding
characteristic vector Ii of the matrix [fij1is expensive if standard computer codes are used:
However, improvement in economy is possible if more specialized methods are introduced. For
instance, it is possible to obtain CUI(S) and Ii(s) from the decomposed [faJl], using an iterative cycle
similar to that defined by (5.11). An evaluation of this possibility is documented in [33] and wiD be
published in the near future.

5.3 Concluding remarks
(a) From the present description of the computation of critical points should not be deduced

tBy factorization is meant the computation of 1I.$(u)) and decomposition, i.e. the determination of its inverse or
semi-inverse.
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that the predictors (4.4a) or (4.4b) can be used along the whole length of the path in all practical
cases. Successful application of these estimates is based on monotonically decreasing values of
D(Sj) or l.Ll,(Sj) and in general this condition is not fulfilled in the complete interval 0 ~ S ~ s*.
Examples of cases where D first increases for 0 ~ S ~ S. are given in[28,31]. Consequently,
implementation of the estimates (4.4a) and (4.4b) must be accompanied with appropriate
safeguards.

(b) It sometimes happens that the path contains a stationary point p= 0 or a point where
p :! 0, after which p starts to increase again [31]. The advantage of the parameter S as compared
to p is clearly demonstrated in such cases.

(c) Just after the completion of this manuscript, the author received a study by Menzel and
SchwetIick [32]. which concerns a method quite similar to the one denoted here by basic
procedure. It is shown in a rigorous fashion that the method converges if the solution curve
i(s) exists, the matrix [fi.a(X)] has the rank N and the stepsize As is taken small enough. These
conditions correspond to the conditions stated in Section 3.4.
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APPENDIX A
The equivalence of conditions (2.26&) and (2.3Ib) folows from the connection between the properties of the matrices

[fiJI and [Aijl. The characteristic values and vectors {w(i), ali)} of the symmetric matrix [fIJI are defined by

(AI)

At the critical state

(A2)

according to the definition given in (2.18). The symmetric matrix IAiJI is defined by (2.29)

It satisfies the property

AJ;.t = f~j.t = S,.D.

The characteristic values and vectors {A(i): b(i)} are defined by

They can be expressed in terms of w(i) and a(i)

A(i) = w~'): b(i) = a(i)

(i = 1,2,3, ..... N).

At the critical state the eigenvalues A(i) become

H

A(I) = nw(k): A(i) =0

(i = 2,3, .... N).

(A3)

(A4)

(AS)

(A6)

(A7)

The characteristic vectors {ali): i = I, 2, ..., N} form a basis of a N~imensionallinear space RH• The set of vectors ;
obtained by the operation

Yi = fijXJ (A8)

for all i that belong to RH, defines a subspace _T(jIJ)' called the range of [fIJI. In the particular case considered here this
space is (N - I) dimensional. A basis of it is: {all); l =2,3, ... H}. If f belonp to the subspace N(jIJ) with basis a(l), the
operation (A8) yields; = O. The subspace N(jIJ) is called the null space of [fIJ]. It is noted that RHis the union of T(jIJ)
and N(jIJ)'

The operation

(A9)

for all i in RH defines the range of [AIJI: T(AIJ). Tbis subspace has the basis {a(l)} and is equal to the null space of [fIJI.
thus: nAIJ). N(jIJ)' Moreover, the set of all i leading to ; =0 in (A9) defines the nuD space of IAIJ]. A basis of this
space is {a(Ia): 11 =2, 3, 4, ... N} and it is concluded that N(AIJ). T(jIJ). Apparently, the geometrical properties of [fIJI
and [AIJI are complementary at the critical points.

Consider now the bifurcation condition (2.26b).

Qj(l)/U1 = O. (AIO)

This equation conveys that the vector [fl,ol ~ 0 does not belona to H(fIJ) but to T(fiJ). H(~J)' Consequently, if (AIO) is
satisfied

aD
AJUI=-fl.o=Oali.;

must follow. The arl1lment can also be reversed. Consequently, (AlO) and (All) are equivalent statements.

(All)


